Generalized Functions Exercise 1

Yotam Alexander

April 6, 2016

1. Let $f \in L^1_{loc}(R)$. We need to show that ξ_f defined by $\xi_f(g) = \int_{-\infty}^{\infty} f(x)g(x)dx$ for any $g \in C_c^{\infty}(R)$ is adistribution. Linearity is clear by the elementary properties of the integral, thus it remains to be shown that for $g_n, g \in C_c^{\infty}(\mathbb{R})$ such that g_n converge to g (in the sense defined in class) we have:

$$\xi_f(g_n) = \int_{-\infty}^{\infty} f(x)g_n(x)dx \to \xi_f(g) = \int_{-\infty}^{\infty} f(x)g(x)dx$$

This Follows from the dominated convergence theorem: indeed, we have pointwise convergence, and for n sufficiently large $|f(x)g_n(x)| \leq |f(x)(|g(x)| + 1_{[-M,M]})|$ (where M is large enough that [-M, M] contatins the support of g_n, g), which is integrable.

2. Let $U_1, U_2 \subseteq \mathbb{R}$ be open sets and let $g \in C_c^{\infty}(U_1 \cup U_2)$. Let $K \subseteq U_1 \cup U_2$ be the (compact) support of g. We claim that one can find compact sets $K_1 \subseteq U_1$, $K_2 \subseteq U_2$ such that $K \subseteq K_1 \cup K_2$. Indeed, U_1, U_2 are open so for every point in K one can find a neighborhood whose (compact) closure is contained in either U_1 or U_2 (by taking any open neighborhood and shrinking it). By compatness one can then take a finite subcover. Now take K_1 to be the union of the closures of the neighborhoods contained in U_1 (which is compact as a union of finitely many compact subsets of R), and similarly for K_2 . Now we can construct cut off functions for K_1 and K_2 , i.e functions h_1, h_2 in $C_c^{\infty}(U_1), C_c^{\infty}(U_2)$ that are identically 1 in K_1, K_2 respectively (This construction was shown in the tirgul). We claim that $g = gh_1 + gh_2(h_1 - 1)$ (note that $gh_1 \in C_c^{\infty}(U_1)$ and $gh_2(1 - h_1) \in C_c^{\infty}(U_2)$). Indeed, for points outside of K we have 0 = 0 + 0. For a point in K, if it's in K_1 we have $gh_1 + gh_2(1 - h_1) = g + 0 = g$, and if it's in K_2 we get $gh_1 + gh_2(1 - h_1) = gh_1 + g(1 - h_1) = g$. So the desired equality holds throughout $U_1 \cup U_2$ and we are done.

3. We define a linear mapping from the space of equivalence classes of cauchy sequences of weakly convergent smooth functions with compact support to the space of distributions as follows: $D([f_n])(g) = \lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x)g(x)dx$ (this limit exists by the definition of a cauchy sequence and is well defined by the definition of equivalence). Clearly D is a linear operator. The continuity of Dfollows from the following, more general claim: the limit of a sequence of weakly convergent distributions is itself a distribution (a sequence of distributions D_n is called weakly convergent if $D_n(f)$ converges for any $f \in C_c^{\infty}(\mathbb{R})$). This in turn follows from the Banach-Steinhaus theorem for Frechet spaces: a functional on $C_c^{\infty}(\mathbb{R})$ is continuous iff its rectriction to $C_c^{\infty}(K)$ is continuous for every compact subset $K \subseteq \mathbb{R}$ (by definition of sequential continuity, which implies continuity for functionals). This space is a Frechet Space and thus by Banach-Steinhaus a pointwise limit of continuous functionals on it is continuous.

This mapping is canonical in the sense that it takes a constant sequence $f_n \equiv f$ to the distribution corresponding to f. It remains to be shown that this map is an isomorphism: injectivity is clear, because by definition $D([f_n])$ is the zero distribution iff $[f_n] = 0$. We claim that given some distribution D one can find a sequence of compactly supported smooth functions that approximates it:

First, for any n let $g_n \in C_c^{\infty}(\mathbb{R})$ be a function that is identically 1 on [-n, n]. Then clearly for any distribution $D, f \in C_c^{\infty}(\mathbb{R}), g_n D(f) = D(g_n f) = D(f)$ for n sufficiently large. Now let $f_n \in C_c^{\infty}(\mathbb{R})$ be an approximation to the identity (i.e for all n, $f_n \geq 0$, $\int_{-\infty}^{\infty} f_n(x) dx = 1$ and $supp(f_n)$ shrinks to $\{0\}$). Note that for any $g \in C_c^{\infty}(R)$, $g * f_n$ tends to g (strongly in $C_c^{\infty}(\mathbb{R})$). Indeed, $g, g * f_n$ are all supported in some compact set because $supp(f_n)$ shrinks to $\{0\}$ and $supp(g * f_n) \subseteq supp(g) + supp(f_n)$. Uniform convergence follows easily from the uniform continuity of g, and uniform convergence of the derivatives then follows from the identity $(g * f_n)' = g' * f_n$.

We claim that for any ditribution D, $f_n * D \to D$ (note that $f_n * D$ is smooth because its derivative equals $f'_n * D$). This is true because for any $g \in C_c^{\infty}(\mathbb{R})$ we have

$$D(g(-t)) = g * D(0) = \lim_{n \to \infty} (g * f_n) * D(0) = \lim_{n \to \infty} g * (f_n * D)(0) = \lim_{n \to \infty} (f_n * D)(g(-t)) = \lim_{n \to \infty} (g * f_n) * D(0) = \lim_{n \to \infty} (g * f_n) *$$

where we use the associativity of convolution. Finally, we can exhibit a sequence of functions in $C_c^{\infty}(\mathbb{R})$ converging (weakly) to D: the sequence $g_n(f_n * D)$. This is true because of a combination of the above arguments: for any $h \in C_c^{\infty}(R), g_n(f_n * D)(h) = f_n * D(h)$ for n sufficiently large, and this tends to D(h).

4. (a) We need to show that $supp(a\xi_1 + b\xi_2) \subseteq supp(\xi_1) \cup supp(\xi_2)$. If U is open and ξ_1, ξ_2 both vanish on U, then clearly so does $a\xi_1 + b\xi_2$. Therefore we have that $(supp(\xi_1) \cup supp(\xi_2))^c = supp(\xi_1)^c \cap supp(\xi_2)^c$, which is the union of all such U, is cotained in $(supp(a\xi_1 + b\xi_2))^c$, and we are done.

(b) We need to show that $supp(\xi) \cap int(supp(\xi)) \subseteq supp(\xi') \subseteq supp(\xi)$. The second inclusion is obvious- if ξ vanishes in some open set then clearly the same holds for ξ' and we are done. To prove the first inclusion we use the following lemma: let ξ be a distribution such that ξ' vanishes on $U = (a, b) \subseteq \mathbb{R}$. Then ξ is constant on (a, b), i.e there is some constant c such that $\xi(f) = c \int_a^b f(x) dx$ for any $f \in C_c^{\infty}(U)$.

Proof: Note that for $g \in C_c^{\infty}(U)$, g is the derivative of a test function iff $\int_a^b g(x)dx = 0$ (indeed, this is equivalent to $G(x) = \int_a^x g(x)dx$ being compactly supported). For any such g we have $\xi(g) = -\xi'(G) = 0$. Now fix some $h \in C_c^{\infty}(U)$ with $\int_a^b h(x)dx = 1$. Then for any $f \in C_c^{\infty}(U)$ we have $\int_a^b (f(x) - h(x)\int_a^b f(t)dt)dx = 0$, so $\xi(f) = \xi(h)\int_a^b f(x)dx$, and $c = \xi(h)$ is our required constant.

Now suppose $x \in supp(\xi) \cap int(supp(\xi))$ but also $x \notin supp(\xi')$. Then by definition ξ' vanishes in some neighboorhood of x, and thus by our lemma ξ is constant there. Now this constant must be non zero, because otherwise $x \notin supp(\xi)$. But this implies that in this neighboorhood any point is in $supp(\xi)$ (because, again, ξ is a non zero constant there), so $x \in int(supp(\xi))$, contradicion.

6. We need to show that the convolution of distributions with compact support is associative. So let S, T, U be distributions with compact support. To simplify the notation, we write the variable with respect to which the distribution is acting in sub-script, so for instance we write f(x) = (U * g)(x) as $U_t(g(x - t))$. Now take some function $h \in C_c^{\infty}(\mathbb{R})$. Note that we have for any two distributions with compact support

$$(S * T)(h) = S_t(T_x(h(x+t)))$$

So $(S * T) * U(h) = (S * T)_t (U_x(h(x + t)))$. Denote $f(t) = U_x(h(x + t))$.

Then $(S*T)*U(h) = (S*T)(f) = S_z(T_u(f(z+u)) = S_z(T_u(U_x(h(x+z+u))))).$ Now we apply the identity $(S*T)(h) = S_t(T_x(h(x+t)))$ twice to obtain

$$S_z(T_u(U_x(h(x+z+u)))) = S_z((T*U)_t(h(t+z))) = (S*(T*U))(h)$$

so we have (S * T) * U = S * (T * U) and we are done.

7. We need to show that for $K \subseteq \mathbb{R}$ compact, a functional $\xi : C_c^{\infty}(K) \to \mathbb{R}$

is continuous iff there exists some $k \ge 0$ and c > 0 such that for all $f \in C^\infty_c(K)$ we have

$$\mid \xi(f) \mid \leq c \parallel f \parallel_{C^k}$$

one direction is clear- if ξ is bounded in the above sense then it is clearly continuous at 0, and therefore by linearity everywhere. Conversely, suppose ξ is continuous. Assume that ξ isn't bounded: this implies the existence of a sequence $f_n \in C_c^{\infty}(K)$ such that for all n

$$|\xi(f_n)| > n \parallel f_n \parallel_{C^n}$$

by rescaling we can can assume $\xi(f_n) = 1$ for all n. This implies that

$$1/n > \parallel f_n \parallel_{C^n} = sup_{x \in K} \sum_{i=1}^{i=n} \mid f_n^{(i)}(x) \mid \ge sup_{x \in k} \mid f_n^{(j)}(x) \mid$$

for any $j \leq n$. Fixing j and letting n tend to infinity, we get that f_n and all their derivatives tend uniformly to 0, and furthermore we know that their supports are all contained in the compact set K. So f_n tend to 0 (in the strong sense). But $\xi(f_n) = 1$ for all n, contradicting the continuity of ξ .

8. (a) Note that away from 0, G is some solution of the homogenous differential equation A(G) = 0. Thus to specify G it suffices to describe its behaviour at 0. Write $A = a_n d^n + a_{n-1} d^{n-1} + ... a_o d^0$ (where $a_n \neq 0$). We claim that if G is a solution to Green's equation it satisfies the following: $G, ..., G^{n-2}$ are continuous at 0, and G^{n-1} is discontinuous there with $\lim_{\varepsilon \to 0^+} G^{n-1}(\varepsilon) - G^{n-1}(-\varepsilon) = \frac{1}{a_n}$. The continuity condition follows from the fact that if $G^{(i)}$ had a jump discontinuity at 0 for $i \leq n-2$, we would get that near 0 $G^{(i+1)} \propto \delta_0$, and thus $G^{(n)} \propto \delta_0^{(k)}$, for some $k \geq 2$. Indeed, if a function f has a jump discontinuity at

x but is smooth elswhere, we have for any $g\in C^\infty_c(\mathbb{R})$:

$$f'(g) = -\int_{-\infty}^{\infty} f(y)g'(y)dx = \lim_{\varepsilon \to 0} -\int_{|y-x| > \varepsilon} f(y)g'(y) = \lim_{\varepsilon \to 0} (-\left[f(y)g(y)\right]_{x+\varepsilon}^{\infty} - \left[f(y)g(y)\right]_{x-\varepsilon}^{x-\varepsilon} + \int_{|y-x| > \varepsilon} f'(y)g(y)dy = g(x)(\lim_{\varepsilon \to 0} f(x+\varepsilon) - f(x-\varepsilon)) + \int_{-\infty}^{\infty} f'(y)g(y)dy$$

But the other side of the equation contains only δ_0 , and $\delta_0, ..., \delta_0^{(k)}$ are independent. Thus $G, ..., G^{n-2}$ are continuous. To determine the size of the discontinuity of G^{n-1} , we take $\varepsilon > 0$ and integrate the equation, getting:

$$1 = \int_{-\epsilon}^{\epsilon} \delta = \int_{-\epsilon}^{\epsilon} a_n \frac{d}{dx} G^{(n-1)}(x) dx + \int_{-\varepsilon}^{\varepsilon} a_{n-1} \frac{d}{dx} G^{(n-2)}(x) dx + \dots + \int_{-\varepsilon}^{\varepsilon} a_0 G(x) dx$$

Now we take $\varepsilon \to 0$, and observe that from the continuity of $G, ..., G^{n-2}$, all the terms except $\lim_{\varepsilon \to 0} \int_{-\epsilon}^{\varepsilon} a_n \frac{d}{dx} G^{(n-1)}(x) dx$ vanish. So we are left with

$$1 = \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} a_n \frac{d}{dx} G^{(n-1)}(x) dx = a_n \lim_{\varepsilon \to 0} (G^{(n-1)}(\varepsilon) - G^{(n-1)}(-\varepsilon))$$

and we get the size of the jump. Conversely, suppose A(G) = 0 away from 0, and G satisfies the conditions above.

(b) Denote by $G_A(x,y)$ the solution of $A(G)(y) = \delta(y-x)$. For some $g \in C_c^{\infty}(\mathbb{R})$, set $A_{G_A}(g)(y) = \int_{-\infty}^{\infty} G_A(x,y)g(x)dx$. We need to prove the identity $A(A_{G_A}(g)(y)) = g(y)$. This follows from the properties of the green function and the δ function:

$$A(A_{G_A}(g)(y)) = A \int_{-\infty}^{\infty} G_A(x, y)g(x)dx = \int_{-\infty}^{\infty} A(G_A(x, y))g(x)dx = \int_{-\infty}^{\infty} \delta(y - x)g(x)dx = g(y)$$