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1. Let f ∈ L1
loc

(R). We need to show that ξf de�ned by ξf (g) =
´∞
−∞ f(x)g(x)dx

for any g ∈ C∞
c
(R) is adistribution. Linearity is clear by the elementary prop-

erties of the integral, thus it remains to be shown that for gn, g ∈ C∞
c (R) such

that gn converge to g (in the sense de�ned in class) we have:

ξf (gn) =

ˆ ∞

−∞
f(x)gn(x)dx → ξf (g) =

ˆ ∞

−∞
f(x)g(x)dx

This Follows from the dominated convergence theorem: indeed, we have

pointwise convergence, and for n su�ciently large | f(x)gn(x) |≤| f(x)(| g(x) |

+1[−M,M ]) |(where M is large enough that [−M,M ] contatins the support of

gn, g) ,which is integrable.

2. Let U1, U2 ⊆ R be open sets and let g ∈ C∞
c (U1∪U2) . LetK ⊆ U1∪U2 be

the (compact) support of g. We claim that one can �nd compact setsK1 ⊆ U1,

K2 ⊆ U2 such that K ⊆ K1 ∪K2. Indeed, U1, U2 are open so for every point in

K one can �nd a neighborhood whose (compact) closure is contained in either

U
1
or U

2
(by taking any open neighborhood and shrinking it). By compatness

one can then take a �nite subcover. Now take K1 to be the union of the closures

of the neighborhoods contained in U1 (which is compact as a union of �nitely

many compact subsets of R), and similarly for K2. Now we can construct

cut o� functions for K1andK2, i.e functions h1, h2 in C∞
c (U1), C

∞
c (U2) that
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are identically 1 in K1,K2 respectively (This construction was shown in the

tirgul). We claim that g = gh1 + gh2(h1 − 1) (note that gh1 ∈ C∞
c (U1) and

gh2(1 − h1) ∈ C∞
c (U2)) . Indeed, for points outside of K we have 0 = 0 + 0.

For a point in K, if it's in K1we have gh1 + gh2(1− h1) = g+ 0 = g, and if it's

in K2we get gh1 + gh2(1− h
1
) = gh1 + g(1− h1) = g . So the desired equality

holds throughout U1 ∪ U2 and we are done.

3. We de�ne a linear mapping from the space of equivalence classes of cauchy

sequences of weakly convergent smooth functions with compact support to the

space of distributions as follows: D([fn])(g) = limn→∞
´∞
−∞ fn(x)g(x)dx (this

limit exists by the de�nition of a cauchy sequence and is well de�ned by the

de�nition of equivalence). Clearly D is a linear operator. The continuity of D

follows from the following, more general claim: the limit of a sequence of weakly

convergent distributions is itself a distribution (a sequence of distributions Dn is

called weakly convergent if Dn(f) converges for any f ∈ C∞
c (R)). This in turn

follows from the Banach-Steinhaus theorem for Frechet spaces: a functional on

C∞
c (R) is continuous i� its rectriction to C∞

c (K) is continuous for every compact

subset K ⊆ R (by de�nition of sequential continuity, which implies continuity

for functionals). This space is a Frechet Space and thus by Banach-Steinhaus a

pointwise limit of continuous functionals on it is continuous.

This mapping is canonical in the sense that it takes a constant sequence

fn ≡ f to the distribution corresponding to f . It remains to be shown that this

map is an isomorphism: injectivity is clear, because by de�nition D([fn]) is the

zero distribution i� [fn] = 0. We claim that given some distribution D one can

�nd a sequence of compactly supported smooth functions that approximates it:

First, for any n let gn ∈ C∞
c (R) be a function that is identically 1 on [−n, n].

Then clearly for any distribution D, f ∈ C∞
c (R), gnD(f) = D(gnf) = D(f) for

n su�ciently large.
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Now let fn ∈ C∞
c (R) be an approximation to the identity (i.e for all n,

fn ≥ 0,
´∞
−∞ fn(x)dx = 1 and supp(fn) shrinks to {0}). Note that for any

g ∈ C∞
c (R), g ∗ fn tends to g (strongly in C∞

c (R)). Indeed, g, g ∗ fn are all

supported in some compact set because supp(fn) shrinks to{0} and supp(g ∗

fn) ⊆ supp(g)+ supp(fn). Uniform convergence follows easily from the uniform

continuity of g, and uniform convergence of the derivatives then follows from

the identity (g ∗ fn)
′
= g

′ ∗ fn.

We claim that for any ditribution D, fn∗D → D (note that fn∗D is smooth

because its derivative equals f
′

n ∗D). This is true because for any g ∈ C∞
c (R)

we have

D(g(−t)) = g∗D(0) = limn→∞(g∗fn)∗D(0) = limn→∞g∗(fn∗D)(0) = limn→∞(fn∗D)(g(−t))

where we use the associativity of convolution. Finally, we can exhibit a

sequence of functions in C∞
c (R) converging (weakly) to D: the sequence gn(fn ∗

D). This is true because of a combination of the above arguments: for any

h ∈ C∞
c (R), gn(fn ∗D)(h) = fn ∗D(h) for n su�ciently large, and this tends

to D(h).

4. (a) We need to show that supp(aξ
1
+ bξ2) ⊆ supp(ξ1) ∪ supp(ξ2).If U is

open and ξ1, ξ2 both vanish on U , then clearly so does aξ1 + bξ2. Therefore we

have that (supp(ξ1) ∪ supp(ξ2))
c = supp(ξ1)

c ∩ supp(ξ2)
c, which is the union of

all such U , is cotained in (supp(aξ1 + bξ2))
c, and we are done.

(b) We need to show that supp(ξ)∩ int(supp(ξ)) ⊆ supp(ξ
′
) ⊆ supp(ξ). The

second inclusion is obvious- if ξ vanishes in some open set then clearly the same

holds for ξ
′
and we are done. To prove the �rst inclusion we use the following

lemma: let ξ be a distribution such that ξ
′
vanishes on U = (a, b) ⊆ R. Then ξ

is constant on (a, b), i.e there is some constant c such that ξ(f) = c
´ b
a
f(x)dx

for any f ∈ C
∞

c (U).
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Proof: Note that for g ∈ C∞
c (U), g is the derivative of a test function i�

´ b
a
g(x)dx = 0 (indeed, this is equivalent to G(x) =

´ x
a
g(x)dx being compactly

supported). For any such g we have ξ(g) = −ξ
′
(G) = 0. Now �x some h ∈

C∞
c (U) with

´ b
a
h(x)dx = 1. Then for any f ∈ C

∞

c (U) we have
´ b
a
(f(x) −

h(x)
´ b
a
f(t)dt)dx = 0, so ξ(f) = ξ(h)

´ b
a
f(x)dx, and c = ξ(h) is our required

constant.

Now suppose x ∈ supp(ξ)∩ int(supp(ξ)) but also x /∈ supp(ξ
′
). Then by def-

inition ξ
′
vanishes in some neighboorhood of x,and thus by our lemma ξ is con-

stant there. Now this constant must be non zero, because otherwise x /∈ supp(ξ).

But this implies that in this neighboorhood any point is in supp(ξ) (because,

again, ξ is a non zero constant there), so x ∈ int(supp(ξ)),contradicion.

6. We need to show that the convolution of distributions with compact sup-

port is associative. So let S, T, U be distributions with compact support. To

simplify the notation, we write the variable with respect to which the distri-

bution is acting in sub-script, so for instance we write f(x) = (U ∗ g)(x) as

Ut(g(x − t)). Now take some function h ∈ C∞
c (R). Note that we have for any

two distributions with compact support

(S ∗ T )(h) = St(Tx(h(x+ t)))

So (S ∗ T ) ∗ U(h) = (S ∗ T )t(Ux(h(x+ t)). Denote f(t) = Ux(h(x+ t)).

Then (S∗T )∗U(h) = (S∗T )(f) = Sz(Tu(f(z+u)) = Sz(Tu(Ux(h(x+z+u)))).

Now we apply the identity (S ∗ T )(h) = St(Tx(h(x+ t))) twice to obtain

Sz(Tu(Ux(h(x+ z + u)))) = Sz((T ∗ U)t(h(t+ z))) = (S ∗ (T ∗ U))(h)

so we have (S ∗ T ) ∗ U = S ∗ (T ∗ U) and we are done.

7. We need to show that for K ⊆ R compact, a functional ξ : C∞
c (K) → R
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is continuous i� there exists some k ≥ 0 and c > 0 such that for all f ∈ C∞
c (K)

we have

| ξ(f) |≤ c ‖ f ‖Ck

one direction is clear- if ξ is bounded in the above sense then it is clearly

continuous at 0, and therefore by linearity everywhere. Conversely, suppose ξ

is continuous. Assume that ξ isn't bounded: this implies the existence of a

sequence fn ∈ C∞
c (K) such that for all n

| ξ(fn) |> n ‖ fn ‖Cn

by rescaling we can can assume ξ(fn) = 1 for all n. This implies that

1/n >‖ f
n
‖Cn= supx∈K

i=n∑
i=1

| f
(i)

n (x) |≥ supx∈k | f (j)
n (x) |

for any j ≤ n. Fixing j and letting n tend to in�nity, we get that fn and

all their derivatives tend uniformly to 0, and furthermore we know that their

supports are all contained in the compact set K. So fn tend to 0 (in the strong

sense). But ξ(fn) = 1 for all n, contradicting the continuity of ξ.

8. (a) Note that away from 0, G is some solution of the homogenous di�eren-

tial equation A(G) = 0. Thus to specify G it su�ces to describe its behaviour at

0. Write A = and
n+an−1d

n−1+ ...aod
0 (where an 6= 0). We claim that if G is a

solution to Green's equation it satis�es the following: G, ..., Gn−2 are continuous

at 0, and Gn−1 is discontinuous there with limε→0+G
n−1(ε)−Gn−1(−ε) = 1

an
.

The continuity condition follows from the fact that if G(i)had a jump discon-

tinuity at 0 for i ≤ n − 2 , we would get that near 0 G(i+1) ∝ δ0, and thus

G(n) ∝ δ
(k)
0 , for some k ≥ 2. Indeed, if a function f has a jump discontinuity at
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x but is smooth elswhere, we have for any g ∈ C∞
c (R):

f
′
(g) = −

ˆ ∞

−∞
f(y)g

′
(y)dx = limε→0−

ˆ
|y−x|>ε

f(y)g
′
(y) = limε→0(− [f(y)g(y)]

∞
x+ε−[f(y)g(y)]

x−ε
−∞ +

ˆ
|y−x|>ε

f ′(y)g(y)dy = g(x)(limε→0f(x+ ε)− f(x− ε)) +

ˆ ∞

−∞
f

′
(y)g(y)dy

But the other side of the equation contains only δ0, and δ0, ..., δ
(k)
0 are in-

dependent. Thus G, ..., Gn−2 are continuous. To determine the size of the

discontinuity of Gn−1, we take ε > 0 and integrate the equation, getting:

1 =

ˆ ε

−ε

δ =

ˆ ε

−ε

an
d

dx
G(n−1)(x)dx+

ˆ ε

−ε

an−1
d

dx
G(n−2)(x)dx+...+

ˆ ε

−ε

a0G(x)dx

Now we take ε → 0, and observe that from the continuity of G, .., Gn−2, all

the terms except limε→0

´ ε
−ε

an
d
dxG

(n−1)(x)dx vanish. So we are left with

1 = limε→0

ˆ ε

−ε

an
d

dx
G(n−1)(x)dx = anlimε→0(G

(n−1)(ε)−G(n−1)(−ε))

and we get the size of the jump. Conversely, suppose A(G) = 0 away from 0,

and G satis�es the conditions above.

(b) Denote by GA(x, y) the solution of A(G)(y) = δ(y − x). For some

g ∈ C∞
c (R), set AGA

(g)(y) =
´∞
−∞ GA(x, y)g(x)dx. We need to prove the

identity A(AGA
(g)(y)) = g(y). This follows from the properties of the green

function and the δ function:

A(AGA
(g)(y)) = A

ˆ ∞

−∞
GA(x, y)g(x)dx =

ˆ ∞

−∞
A(GA(x, y))g(x)dx =

ˆ ∞

−∞
δ(y−x)g(x)dx = g(y)
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